AGAGE_sacle_2017_v1 (updated in June 2017)

Standard scales used in archived species from the measurement of AGAGE GC-MD and GC-MS instruments (species with updated scales are highlighted by red color)

species	formula	scale	units	comments
methane	CH ₄	Tohoku University	ppb	
nitrous oxide	N ₂ O	SIO-1998	ppb	new SIO-16 scale
carbon monoxid	CO	CSIRO94	ppb	
hydrogen	H ₂	MPI-2009	ppb	
CFCs				
CFC-11	CCl₃F	SIO-05	ppt	
CFC-12	CCl ₂ F ₂	SIO-05	ppt	
CFC-113	CCl ₂ FCClF ₂	SIO-05	ppt	
CFC-114	CCIF ₂ CCIF ₂	SIO-05	ppt	
CFC-115	CCIF ₂ CF ₃	SIO-05	ppt	
HCFCs				
HCFC-22	CHCIF ₂	SIO-05	ppt	
HCFC-141b	CH ₃ CCl ₂ F	SIO-05	ppt	
HCFC-142b	CH ₃ CCIF ₂	SIO-05	ppt	
			-	
HFCs				
HFC-23	CHF ₃	SIO-07	ppt	
HFC-32	CH ₂ F ₂	SIO-07	ppt	
HFC-125	CHF ₂ CF ₃	SIO-14	ppt	
HFC-134a	CH₂FCF₃	SIO-05	ppt	
HFC-143a	CH₃CF₃	SIO-07	ppt	
HFC-152a	CH₃CHF₂	SIO-05	ppt	
HFC-227ea	CF₃CHFCF₃	SIO-14	ppt	
HFC-236fa	CF₃CH₂CF₃	SIO-14	ppt	
HFC-245fa	CHF ₂ CH ₂ CF ₃	SIO-14	ppt	
HFC-365mfc	CH₃CF₂CH₂CF₃	SIO-14	ppt	
HFC-43-10mee	CF ₃ (CHF) ₂ CF ₂ CF ₃	SIO-14	ppt	
Halons				
H-1211	CBrClF ₂	SIO-05	ppt	
H-1301	CBrF ₃	SIO-05	ppt	
H-2402	C ₂ Br ₂ F ₄	SIO-14	ppt	
Chlorocarbons				
methyl chloride	CH₃CI	SIO-05	ppt	
dichloromethane	CH ₂ Cl ₂	SIO-14	ppt	
chloroform	CHCl₃	SIO-98	ppt	
methyl chloroform	CH ₃ CCl ₃	SIO-05	ppt	
trichloroethylene	CHCICCI ₂	UB-98	ppt	
perchloroethylene	CCl ₂ CCl ₂	NOAA-2003B	ppt	
carbon tetrachloride	CCI ₄	SIO-05	ppt	
Bromocarbons				
methyl bromide	CH₃Br	SIO-05	ppt	

PFCs				
PFC-14	CF ₄	SIO-05	ppt	
PFC-116	CF₃CF₃	SIO-07	ppt	
PFC-218	CF ₃ CF ₂ CF ₃	SIO-07	ppt	
Other fluorinated co	ompounds			
sulfur hexafluoride	SF ₆	SIO-05	ppt	
sulfuryl fluoride	SO ₂ F ₂	SIO-07	ppt	
nitrogen trifluoride	NF ₃	SIO-12	ppt	

Notes:

The SIO-16 N2O Calibration Scale (June, 2017)

The SIO-16 calibration scale for N2O is based on a suite of 17 primary standard mixtures: 6 covering the 297-322 ppb concentration range that were also the basis of the SIO-98 calibration scale, and 11 covering the 310-354 ppb concentration range that were prepared for this new scale. Each primary standard was prepared by diluting high-precision pure N2O/CO2 mixtures prepared manometrically in the Keeling CO2 laboratory at SIO. CO2 concentrations were measured in the resulting primary mixtures, referenced to Keeling laboratory CO2 standards, by GC-FID with catalytic conversion to CH4 (Weiss, J. Chrom. Sci., 19, 611-616, 1981) to determine N2O prepared values from the prepared N2O/CO2 ratios. The optimal transfer from the Keeling CO2 calibration scale was established from 9 reference cylinders based on Keeling manometric and optical measurements and improved CG-FID measurements with improved nonlinearity fitting. Uncertainties in this CO2 scale propagation are at the < 0.1 ppm CO2 (< 0.025%) level, and are subject to future revisions based on ongoing additional manometric measurements in the Keeling laboratory

N2O concentrations in these 17 primary standards were measured against each other by GC-ECD (Prinn et al., J. Geophys. Res., 105, 17,751-17,792, 2000) and were fitted to a smooth curve of sensitivity vs. concentration to assign a "best estimate" N2O concentration (dry air mole fraction) to each standard mixture. The relative standard deviation of the corrections applied to the 17 individual prepared values is 0.017%.

The resulting SIO-16 N2O primary calibration scale was then propagated through the AGAGE "R1 scale" consisting of tanks of compressed whole air (Miller et al., Anal. Chem., 80, 1536-1545, 2008), to the entire AGAGE N2O atmospheric record from the beginning of the use of the R1 scale in AGAGE. Changes were also made in how the results were calculated: 1) The nonlinearity correction was changed to take concentration into account, instead of sample/standard ratio, and; 2) The new N2O scale was propagated to the R1 scale using a revised GC-ECD nonlinearity which has been constant since 2004, rather than the nonlinearity determined in 1998 that was used in the earlier propagation.

The resulting new AGAGE global atmospheric N2O values reported on the SIO-16 calibration scale have risen gradually compared to those reported previously, by from 0.0 ppb to approximately +0.8ppb over 20 years (+0.04 ppb/year). Approximately 20% of this increase is due to the use of the concentration based nonlinearity propagation, and about 80% of this increase is due to the use of the post-2004 GC-ECD non-linearity measurements. Importantly, there was no evidence of drift in the 6 original SIO-98 primary standards, and had the new calculation methods described above been used to propagate the SIO-98 scale, the corrections to present-day values, even though they are ~8 ppb above the range of these older standards, would have been much smaller than the changes reported here.